A NOTE ON BIB DESIGNS

BY

D.V.S. SASTRY AND S. PORWAL Vikram University, Ujjain (Received: January, 19/9)

Das has stated in Lemma 3 of [1] that k(v-1)/r must be an integer excepting those designs which can be obtained by repeating a design. Kageyama and Ishii, [3] Proved the falsity of the lemma by considering v=22, b=44, r=14, k=7, $\lambda=4$ which can not be obtained by repeating the symmetric design v=b=22, r=k=7, $\lambda=2$ because the symmetric design does not exist. With this example they reframed the original lemma as follows. "In all BIB designs with parameters v, b, r, k, λ excepting those with v=v, b=c b_1 , $r=cr_1$, k=k and $\lambda=c\lambda_1$ for some integer c, k(v-1)/r is an integer".

The first object of this paper is to show that not one but a series of examples prove the falsity of Das's lemma. Consider the series due to Sprott [4] which can be constructed if $2(k-1)=p^n$ where p is prime.

$$v=2k$$
; $b=4(2k-1)$; $r=2(2k-1)$; k ; $\lambda=2(k-1)$

In all such designs for odd values of k, k(v-1)/r is not integer. Infact Kageyama and Ishii [3] reframed lemma is also not totally correct because for many designs whose parameters are of the type v=v, $b=cb_1$, $r=cr_1$, k=k, $\lambda=c\lambda_1$, k(v-1)/r is an integer. Consider the design v=16, b=40, r=15, k=6, $\lambda=5$ which is of the above form where c=5, but k(v-1)/r is an integer. Similarly (121, 132, 60, 55, 27) is of the above form with c=3 but k(v-1)/r is an integer. These observation make us to reframe the lemma as follows. "In all BIB designs with v, b, r, k, λ excepting those with v=v, b=cv, r=ck, k, λ , c and v are even integers k(v-1)/r is an integer".

Das [1] in section 3(b) has stated that λ is a factor of (k-1) if r and k have no common factor. Kageyama and Ishii [3] have taken an example of an unknown design to show that λ is not a factor of (k-1) even though r and k have no common factor. In fact, the above series given by Sprott [4] shows that λ is not a factor of (k-1) even though r and k have no common factor.

In section 3(a) Das has proved that when r and k have no common factor $b-r \geqslant (v-1)$ and in section 5(a) he proved the conditions for resolvability. Third object of this note is to combine both the results and give simpler proofs.

Following Das [1]

[4] Sprott, D.A. (1956)

[5] Stanton, R.G. (1957)

$$\frac{b-r}{v-1} = \frac{r-\lambda}{k} = \frac{r^2-b\lambda}{r} = \frac{n_1}{s}$$

where n_1 is the H.C.F of $r-\lambda$ and $r^2-b\lambda$ and s that of r and k. When s=1, $r-\lambda \geqslant k$.

Stanton [5] proved that this inequality is equivalent to $b-r\geqslant$ v-1. When r and k are prime to each other, we have b is divisible by r and thus satisfies the conditions.

Das and Kulshresta [2] considered the series v, pv, pk, k, λ and constructed initial blocks for some BIBDS. In a lemma, there they showed that $(\nu-1)/p$ is an even integer. Luckily for them the designs given in Table 1, all v satisfy that relation. The method fails when v and p are both even.

ACKNOWLEDGEMENTS

The authors acknowledge their thanks to the referees for their helpful comments.

REFERENCES

[1]	Das, M.N. (1954)	:	"On parametric relations in a balanced incomplete block design". Jour. Ind. Soc. Agr. Stat. 6, 147-152.
[2]	Das, M.N. and A.C. Kulshreshtha (1968)	:	"On derivation of initial blocks of BIB designs with more than one initial block". The Aust. Jour. of Stat. Vol. 10, 75-82.
[3]	Kageyama, S. and Goro Ishii (1975)	:	"A note on BIB designs". The Aust. Jour. of Stat. Vol. 17, 49-50.
[4]	Sprott, D.A. (1956)	:	"Some Series of BIBDS". Sankhyā 17, 185-92.

1054-5.

"A note on BIBDS". Ann. Math. Stat. 28,